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1. INTRODUCTION TO TRAIN RACE

The objective of this project is to create an N-scale model train layout employing

microcomputer control.  All projects are to employ three basic operations: sense, actuate and

sequence.  Additional physical constraints define the layout of the project, but all components

specific to our project, including the railroad tracks, daughter boards, and microprocessor are

required to fit on a wooden board 48’’×27’’ in dimensions.  The project board is to integrate

seamlessly a pre-designed test stand.

The obvious features of the test stand are its three main tracks; a north and south track are both

unidirectional, while a third track between these is bi-directional.  Additionally, the test stand

contains a computer interface board as well as the Hornby Zero-One™ railroad control system.

The course (MAE 412)'s first half was devoted exclusively to the construction of a 6502 processor-

based microprocessor unit which now serves as the interface between the project board and the

Hornby system, thereby enabling the microcomputer to sense, respond to as well as initiate events

on the test stand.  As a background to our software, the computer executes the Lecky 2.0 routine,

which allows multiple trains to operate on the board simultaneously without possibility of collision.

Our specific project, entitled “Train Race,” uses microcomputer control to make the speed of

main alternating current trains directly dependent on the relative speeds of two direct current trains

which run on independent railway loops and whose speeds are set by the user.  Please see Appendix

A for the general layout of the project board.

The project runs as follows:  Initially, when the project is first powered, only trains on the AC

railroads have the capability of moving.  When the first AC train enters the board on the

southbound track, it stops at the station defined by an optical proximity detector.  Its arrival triggers

DC trains, which run in sequence around their loops; the left DC train travels, followed by the right
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DC train, both at speeds specified by potentiometer knobs housed on the project board.  When each

DC train is running, a software timing scheme runs and records the train “loop time” in arbitrary,

which the microcomputer stores in memory locations.  The stop point for each DC train is defined

by a Hall Effect sensor, one of which is mounted below train level, in between the rails for each

loop.  When both DC trains complete their respective loops, the microprocessor compares the loop

times of each train.  By having the microprocessor interfacing with an Interactive Controller, codes

sent by the microprocessor are translated into speeds and directions for trains on the AC circuit.  If

the left DC train completes its loop in less time than the right DC train, a code is sent from the

microprocessor to the Interactive Controller, instructing the main track AC train to depart rapidly

(speed 14).  If the right DC train completes its loop more quickly, the waiting AC train departs more

slowly (speed 10).  Having run both the DC trains and having activated the AC circuit, one heat of

Train Race is complete, and the system then waits for the next AC train, regardless of its number to

enter the optical proximity detector station, and the same race sequence repeats indefinitely.  Thus,

the speed of any AC train operating on the system is defined by the relative speed of the two DC

engines.

Train Race accomplishes the requirements of sensing, actuating, and sequencing with minimum

hardware, straightforward software and with a high level of robustness.
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2. OPERATION DIRECTIONS

Once power is supplied to the system and when an AC train is made to pass the optical

proximity detector on the AC south AC track, Train Race operates autonomously.  If there is no

user input to change the relative speeds of the DC trains, Train Race continues to perform its

functions without changing the AC circuit train speeds.

After each power up cycle, it is necessary to initialize the race by commanding an AC train to

pass the optical proximity detector. The steps for this are as follows:

1. Start the program ‘fmpu’ at the prompt ‘c:\>’ on the Interactive Controller computer.  The

program should recognize computer 3 as being attached to the system.  Load the data set of

controller instructions from a file called ‘race’ into computer 3.  Start the train block

monitor routine.

2. Begin by bringing any train (1-8) at any speed (2-14) into the main track station located on

the south track.  The AC train will stop once it passes the optical proximity detector.

3. Operate DC trains within appropriate speed limits.  The microcomputer’s displays show a

“stopwatch” for both DC train loops.

4. As soon as both trains have finished their respective loops, the display shows a 1 on the side

of the winner.

5. The AC train will depart from the station, but there will be a short delay before the new

speed is established.

6. Let the project run autonomously, or change the winner on the next race by adjusting the

DC train speeds.

Table 1 summarizes the display codes for user convenience.
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Display Code Program State
00 System waiting for initial AC train to arrive at south track station.

Stopwatch Individual DC loop train being timed
10 Left train won race; most recently departed AC train traveling at speed 14
01 Right train won race; most recently departed AC train traveling at speed 10

Table 1. Display codes.

There is no special requirement for the trains on the AC tracks.  However, because the southbound

track power is switched by a relay (discussed later), the rail connectors to the southbound tracks

must be insulated. The DC trains must have a short enough “wheelbase” to be able to travel around

the tight 8.0’’ radius loops and must have a belly-mounted magnet such that it clears any

obstructions while proceeding around the loop.
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3. HARDWARE

The hardware involved with the project consists of the main microprocessor unit, along with

DC current regulator circuits for DC train speed control, Hall sensors to detect DC train loop

completion, and an optical sensor and track kill for AC train detection and stoppage, respectively, on

the south track.  The accessory circuitry was placed on 2 daughter boards, which were positioned on

the project board with some proximity to the area that they controlled.

3.1 Microprocessor Unit
The core component of Train Race is a microcomputer based on the 6502 processor.  This

computer was built during the first half of the course and contains standard components including

Versatile Interface Adapters (discussed later), Random Access Memory as well as a socket for an

Erasable Programmable Read Only Memory chip.  As directed, buffers are used for all lines entering

and leaving from the microcomputer through an edge connector. An optical isolator prevents high

voltages from the Hornby System from damaging the sensitive TTL circuitry.

A picture of the microprocessor unit mounted on the project board is shown in Figure 1. A

schematic of the microprocessor unit is given in Appendix B.

Figure 1. Photo of the microcomputer.
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3.2 Address Decode Logic
The address logic for the 6502 microprocessor is decoded by a Generic Array Logic™

(GAL16V8) device.  This device uses the three highest bits of the 16 address lines to activate

particular devices. If writing to the device is necessary, 2φ  is included with the logic for timing

purposes. That is, it is logically combined with the device’s activation signals to ensure that the data

is available at time of writing.  The GAL also performs the logical inversion of the RESET line.

In decoding address logic, the GAL functions as a device allowing connections of specific

inputs to hardwired logic gates.  Essential connections are established by “burning” out those that

are unwanted.  The programming of a GAL for Train Race was accomplished with a .jed file

containing lines of code specifying a ‘1’ if a specific connection was to be removed and ‘0’ if a

connection should remain unaltered.  The ADL for our computer was first planned on the diagram

shown in Appendix C1.  The appropriate .jed code was then read from this grid.  Table 2 shows the

relevant lines of code, with all other lines set to 0 except for the line immediately preceding the

shown lines, which is set entirely to 1 in order to activate the GAL’s output NOT gate.

LINE CODE
0032 01110111011111111111111111111111
0288 10010111101111111111111111111111
0544 10011011101111111111111111111111
0800 01111011101111111111111111111111
1056 01111011011111111111111111111111
1312 11101111111111111111111111111111
1568 11111111111101111111111111111111

Table 2. Relevant lines of the .jed GAL code.

Appendix C3 shows the connectivity of our ADL with the appropriate components of the

microcomputer.

3.3 Daughter Board #1
Daughter board #1 houses the components used to operate the AC southbound track.  The two

circuits on this board are those for the optical proximity sensor and for the southbound track power
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kill.  The southbound track is killed using a high TTL signal from PA0 at VIA 8000.  When this line

goes high, no current flows through the base of the 2N3906 transistor, and the relay opens the

normally closed yellow AC connection.

The circuitry on daughter board #1 for the optical proximity detector provides the +5 VDC

power and ground.  An LM339 analog comparator compares the signal from the optical proximity

detector with 2.5 V to send a TTL signal out to the computer (low = train is  front of sensor).

Various pull-up resistors and capacitors are used. A TIL149 transistor is also housed on this

daughter board to trigger the relay.  Figure 2 shows daughter board #1.

Figure 2. Photo of daughter board #1.

The wiring schematic is shown in Figure 3.  For a larger image, please refer to Appendix D1.

Figure 3.Layout and wiring of daughter board #1.
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3.4 Daughter Board #2
Daughter board #2 contains most of the elements necessary to sense and actuate the two DC

train loops. +5 VDC and ground drawn from the main computer, as are TTL control lines for both

DC trains.  The DC power is buffered using two 0.1 µF capacitors, and PB7 of VIA A000 is also

routed to the daughter board for the purpose of cutting power draw during the data frames.  AC

power is fed to the motherboard and converted to +20 VDC and DC ground using a rectifier bridge

circuit.  A multiple input OR gate allows a DC train to run only when both the appropriate TTL

signal and the PB7 lines are low.  There are two 4N33 opto-isolators and two TIP 122 transistors,

one each for each DC train.  One rail of each DC track receives +20 VDC, while the other rail is

connected to the collector of the transistor's collector.  The user varies the train speeds by turning

the appropriate potentiometer (mounted on the project board), which adjusts the base current to the

transistor. A variety of pull-up resistors are used as required by the components.

The DC daughter board also contains the two 1 kΩ resistors required for the output leads of

the two Hall Effect sensors that are used to detect the presence of the DC trains. As documented,

the left DC train runs until it passes the Hall Effect sensor, after which the train is stopped to allow

for the right train to run around the loop.  When it reaches the Hall Effect sensor, the right train

also stops, and the AC train runs at a speed determined by the relative loop times of the DC trains.

Figure 4 shows daughter board #2.

Figure 4. Photo of daughter board #2.
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Figure 5 shows the layout and schematic of daughter board #2.  Please see Appendix D2 for a

larger image.

Figure 5. Layout and wiring of daughter board #2.

3.4 Miscellaneous Hardware
This section discusses the miscellaneous hardware mounted on the project board.

3.4.1 500 kΩΩΩΩ Potentiometers
As described earlier, a 500kΩ potentiometer is used to adjust the base current to the transistor

controlling each DC train. These are mounted on the project board, with one lead to the 20 VDC

supply off daughter board #2. The wiper of each potentiometer is connected to an opto-isolator.

When the proper TTL signals are given, the base of the transistors receive current, and the

appropriate DC rail circuit is closed to allow the train to run. Each potentiometer has a knob with a

pointer as well as a dial to indicate the range of speeds that the DC trains can run safely.
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3.4.2 Hall Effect Sensors
Hall Effect sensors are mounted between the rails of each DC track. They are used to sense the

presence of a DC train. The detection of a DC train signals to the microprocessor that the train has

completed its loop. The power for these sensors are taken off daughter board #2.

3.4.3 Terminal Blocks
Terminal blocks are used to connect and to distribute AC, DC and TTL signals across the

project board. Because lines longer than 8 inches are required to be twisted with their ground, the

use of many terminal blocks allows thin wires to be kept short; they are connected to terminal

blocks, whose opposing ends house thicker wire that can be easily twisted with ground wires.

3.4.4 10 kΩΩΩΩ Resistor and 0.13 µµµµF Capacitor
A 10kΩ resistor is connected across the yellow and green AC lines at a terminal block such that

any remaining charge on the insulated southbound track after the relay cuts power to that track is

dissipated. A 0.13 µF can be found at the same terminal block to dampen any electrical spikes that

may result from switching the power on and off.

3.5 Hardware Conclusions
Train Race uses relatively few components and has been tested to be robust. It has also been

verified that power draw through the AC circuit is acceptable at all times, particularly during the data

frame. The addition of 150 kΩ resistors to ground at the base of the transistor that receives the light

in the opto-isolators resulted in a faster power cut at the data frame.
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4. SOFTWARE

The code for controlling Train Race was written in assembly language for the 6502 processor

and compiled with a XASM65 cross-assembler.  The compiled code was then burned onto a 2764A

EPROM chip using GTEK hardware and software.

The software is written in as simple and straightforward a manner as is possible.  While

increased simplicity can be gained by using an indexed addressing scheme, this improvement was

not implemented due to the robustness of the existing code.

Section 4.2.6 shows a flowchart of our software design. Appendix E contains the user section of

the software in its entirety.

4.1 Interfacing to the Outside World
The VIA (versatile interface adapter) chips are the key to bringing in data to the computer and

sending meaningful instructions to the Train Race components.  Each VIA contains two bytes of

accessible memory.  Before these memory locations can be used for sensing and actuating, they

require initialization of the direction of the data, which is specified by additional byte on eachVIA.

In Train Race, VIA 8000 is used for data related to the project board, with address 8001 (Port A)

related to south track station optical proximity sensor and relay control, and address 8000 (Port B)

related to the control of the DC trains.

Tables 3 and 4show the data direction registers and their contents for ports A and B on VIA

8000.

Bit (MSB to LSB) - - - - - - Optical
Sensor

Relay
Control

Contents 0 0 0 0 0 0 0 1
Table 3. Location 8003 (Port A data direction register)

Bit (MSB to LSB) - - - - Right
Control

Left
Control

Right
Hall

Left
Hall
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Contents 0 0 0 0 1 1 0 0
Table 4. Location 8002 (Port B data direction register)

The following code initialization code fragment fully initializes the state of the VIA data bytes

for the remainder of the program execution.

LDA #$01
STA $8003 ; data direction for VIA 8000 (Port A)
LDA #$0C
STA $8002 ; data direction for VIA 8000 (Port B)

Briefly defining the terms in Tables 3 and 4, the “relay control” refers to the state of the south

track power kill control circuit.  Stopping a train on the south track is performed simply by throwing

the normally connected switch inside the relay to an open state.  The signal to throw the relay comes

from a low TTL signal at the LSB (least significant bit) at port B.

“Optical sensor” refers to the state of the optical proximity detector at the south track station.

When a reflective object such as the tape on every AC train is brought to the 1/8’’ focal length of

the optical proximity detector, the normally high sensor state line becomes low.  Thus, watching for

the arrival of a train involves monitoring the state of port A’s bit 1 for a 0.

“Left Hall” refers to the state of the left DC track’s Hall Effect sensor; monitoring for the loop

completion of the left DC train involves watching the LSB of port B for a 0.  “Left control” will

stop any train on the left DC track if a 0 is placed on bit 1 of port B.  The same sensing and

actuating bit assignments apply to the right DC track.

4.2 Program Execution

4.2.1 Initialization
The user section begins with the standard initialization, defining the location of the program on

the EPROM, took place.  This code is immediately followed by initialization of the data direction

registers for both ports A and B of VIA 8000, along with code that ensures that the DC trains are

initially inactive.
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4.2.2 Main Sequence
The central program sequence is a routine called CHK, from which all other routines have their

origin.  CHK ensures that the relay starts in the normally closed position (power being supplied to

the south track) while continually monitoring the south track station optical proximity detector for

an arriving train.  If no train is located, the routine loops back on itself until a train is detected.  If

the optical sensor state turns low (due to a train’s arrival), CHK branches to the WAIT subroutine.

The WAIT subroutine continues to read the state of the optical proximity detector.  If WAIT

detects that the south track optical sensor returns to the high state, it branches to a subroutine calls

KILL which cuts power to the south track by throwing the relay to the open position.  In operation,

this sequence – CHK, WAIT, and KILL – effectively cuts power to the southbound track when the

optical sensor detects the back edge of an AC train’s reflector.  While at fast speeds the train’s inertia

propels it far past the south track sensor upon track kill, at slow speeds the possibility exists for a

train to stop with its reflector directly in front of the optical proximity detector if front edge

triggering is used, causing the sensor to send a “train present” signal. This would mean that, when

the south track train is instructed to depart upon the next heat of the race, the microprocessor

would erroneously think that an AC train has just arrived and not send out the AC train after the

DC race.  By triggering the relay upon detection of the reflector’s back edge, the possibility for this

immediate detection upon departure is eliminated.  This solution is more elegant and robust than

inserting software delays since the exact stopping location for the AC train is not essential in Train

Race.

4.2.3 DC Engine Race
Of general note, applicable to the entire program, is the concept of writing only to bits of ports

A and B that are necessary to complete the immediate action.  This writing is accomplished by using
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the ORA and AND statements to set and clear bits, respectively.  This scheme allows for fewer

errors, as there is no danger of setting or clearing a bit that is still required for another operation.

The completion of subroutine KILL is followed immediately by the LTIME subroutine, whose

exclusive duty is to reset the state of the left DC train timer.  The scheme used for train timing is

now discussed.

A simple solution for obtaining relative times for the two separate software loops might seem to

be a counter that is incremented each time the LTIME is executed.  In fact, if the loops execute on a

sufficiently short time scale, this solution is appropriate and sufficient.  However, because the clock

frequency of the 6502 microprocessor is 1 MHz, LTIME loop times are on the order of

microseconds, which is far faster than the times of the macroscopic train race events.  The timing

scheme used in Train Race to compare the speed of the two DC engines is based on monitoring the

pulses on the main track power waveform shown in Figure 6, which is on the order of milliseconds.

Figure 6. AC track waveform as generated by the Hornby System.

A pre-defined mailbox in the Arena software, FRANUM, allows the current programmer to

monitor the current frame number on the main track waveform.  Thus, a software counter uses the

periodic cycling of FRANUM.  The timing code for the left DC track is now presented and

discussed.

LLOOK1 JSR LCHK         ; check state of train
 LDA FRANUM       ; timing loop - look for a frame number of 1
 CMP #$01
 BNE LLOOK1
 LDA #$01
 CLC
 ADC $02
 STA $02          ; increment counter when 1 is seen
 STA $4000
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 LDA #$00
 ADC $01
 STA $01

LLOOK2 JSR LCHK         ; look for frame number of 2
 LDA FRANUM
 CMP #$02
 BNE LLOOK2

LL12  JSR LCHK          ; look for 1 again but do not increment counter
 LDA FRANUM
 CMP #$01
 BNE LL12

LL22   JSR LCHK          ; look for 2 again
 LDA FRANUM
 CMP #$02
 BNE LL22
 JMP LLOOK1        ; go back and do it again

Routine LLOOK1 (shown above) checks the current number on FRANUM and waits to see

#$01 (frame number 1).  When it does find a 1, it increments the low byte of a two-byte stopwatch

for the left DC train. Figure 7 shows the zero-page memory locations for both the left and right DC

train stopwatches.

Figure 7. Stopwatch memory locations for DC trains.

After the low byte of the stopwatch is stored to the display, the accumulator loads 0 and adds it

the high byte of the stopwatch.  While this initially seems to be a meaningless instruction, it is part of

an elegant manner of holding a higher place in the stopwatch.  When the low stopwatch byte

becomes #$FF on the preceding ADC instruction, the carry bit is set.  The complete ADC

instruction, per the 6502 software design manual, is A + M + C → A.  Thus, the high stopwatch

byte will only increment when the low byte has reached its maximum, exactly like a real stopwatch.
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To avoid continually adding to the stopwatch by continually detecting a 1 on FRANUM, the

counter is diverted from incrementing on FRANUM = #$01 for 15 frames.  This delay is

accomplished by having a subroutine LLOOK2, which scans FRANUM until #$02 is found, and

then calls subroutine LL12, which stands for “Left Look for 1 for the second time.”  When a frame

number of 1 is detected, the program uses LL22 to search for the second occurrence of 2.  Only

when 2 is found for the second time does the program then search for 1, upon which the stopwatch

is incremented once again.

The code is designed to combat the problem of DC trains stopping for periods of time along

their race.  A disastrous result could entail if only 1 byte of stopwatch were operated.  The low byte

of the counter for this train could very easily loop around back to, say, #$03, after reaching its

maximum of #$FF.  However, a critical amount of information is lost, namely that this train actually

took longer than #$FF to complete the loop.  If the other train legitimately completes its loop in

#$45, the microprocessor would incorrectly determine that the former train won.  Making the

system completely robust to this sort of error is not possible without the addition of several sensors

around the loop to monitor the train’s progress.  Additionally, adding more than one extra byte of

stopwatch becomes difficult because only one carry bit exist, meaning that more sophistication is

necessary to increment higher bytes.  However, by slowing down the stopwatch by delaying

incrementing to every second occurrence of frame 1, and adding a single additional stopwatch byte,

we believe that the stopwatch is made sufficiently robust for practical purposes.

The stopwatch timing sequence of LLOOK1, LLOOK2, LL12, and LL22 periodically calls a

separate routine called LCHK.  This routine simply checks the state of the left DC track Hall sensor.

If the sensor output is detected as a low, LCHK immediately calls LKILL, which sends a signal out

to kill DC power to the left track, thereby stopping the left train. The power then switches to the
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right DC track, and the software advances to RTIME, the analog of LTIME.  Thus, the stopwatch

timing sequence of routines is exited via LCHK.

Every routine above concerning the operation of the left track has an analog for the right track.

The letter ‘R’ is simply substituted for the first ‘L’ in every subroutine name.  The behavior of the

left and right track trains are therefore identical.  However, the end of RKILL allows the software to

continue onto the COMP routine, which begins the determination of the winning DC engine.

4.2.4 Having the “Judges” Decide the Winner
By way of reminder, a win by the left DC train means that the train waiting at the south track

station will depart at speed 14, while a win by the right DC train signals the AC train to depart at a

slower speed 10.  To allow the AC train to depart fast at speed 14, depart fast, a subroutine, FOUT,

is executed; SOUT is executed for slow departure.  These subroutines will be discussed shortly.

As previously mentioned, the completion of RKILL is the completion of the train race, and

COMP is called to determine a winner. The subroutines COMP and GRLS (GReater than or LeSs

than) constitute the necessary subroutines for determining which DC train completed its loop faster.

The two routines are shown below

COMP  LDA $03          ; see which train won
 CMP $01
 BNE GRLS ; go to greater/less than if high bytes not equal
 LDA $04 ; compare low bytes
 CMP $02

GRLS  BCS FOUT
 BCC SOUT

The scheme for determining the winner is as follows: if the right DC train’s stopwatch high byte

(location $03) is not equal to the left engine stopwatch high byte (location $01), the carry would be

set if $03 > $01 and cleared if $03 < $01.  Thus COMP branches to GRLS, where the appropriate

signal to the AC train is determined.  If the high stopwatch bytes for both trains are equal, then

BNE GRLS is skipped, and the low bytes are compared.  This comparison would perform the same
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operation with respect to the carry bit. That is, if the right DC train’s low stopwatch byte (location

$04) is higher than that of the left DC train (location $02), then the left train has 1, the carry is set,

and the AC train departs at high speed (subroutine FOUT).

4.2.5 A “Smart” Departure Routine
To add another layer of robustness to our project, we wanted any AC train that enters the south

track station to depart at the correct speed as determined by the results of the race.  Since setting the

speed of any train on the Hornby system requires input of the associated train number, the program

must know the number of the train that is waiting at the south track station.  Fortunately, this

information is readily available from the mailbox STRAIN.  The task is to obtain this information

and create a unique code for the Interactive Controller to tell that train to depart at the proper speed

as defined by GRLS.

For the AC train to leave at the appropriate speed as a result of the train race, a binary

instruction scheme is required; that is, train 1 could leave the station at either speed 14 or speed 10,

train 2 could leave at either speed 14 or speed 10, and so on.  Thus, the following coding scheme is

used:

Waiting AC Train # Winning DC Train Code to Int. Con.
1 Left 01
1 Right 10
2 Left 02
2 Right 20
… … …
8 Left 08
8 Right 80
… … …

Table 5. Interactive controller coding scheme.

The meaning of the codes meant for the interactive controller will be explained in the next

section; for now, it suffices to point out that a mapping scheme is created such that any possible
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combination of a winning DC train and a waiting AC train is uniquely coded.  The following two

routines were used to implement the coding scheme.

INTF  LDA STRAIN      ; send info to correct train for FOUT
AND #$0F
STA $05
RTS

INTS LDA STRAIN      ; send info to correct train for SOUT
ROL A
ROL A
ROL A
ROL A
AND #$F0
STA $05
RTS

These routines were called by either FOUT or SOUT as indicated in the comments.  Basically, a

fast departure requires the south track train number as the low four bits of Interactive Controller

instruction, and a slow departure required the train number as the high four bits.  Thus, INTF takes

STRAIN, ensured that the four high bits are zeros and hen writes to location $05, the universal

location for a code going to the Interactive Controller.  INTS rotates STRAIN such that the four

low bits become the four high bits, performs an AND instruction to clear the four low bits, and

writes the result to location $05.

Finally, FOUT and SOUT, after calling INTF and INTS, respectively, uses the data written to

$05 to send to the Interactive Controller.  The subroutines indicate the winner by displaying a #$10

for a left win and #$01 for a right win.  Finally, the overall sequence is completed by calling the

original routine CHK, which activates the AC train waiting at the south track station.

4.2.5 Interactive Controller Codes
The Interactive Controller provides a mechanism by which the microprocessor could

communicate directly with the Hornby control unit.  A command code file called ‘race’ has been

written and copied to all Interactive Controllers.  The file consists of the following instructions

CODE #$01 E1 S14 DF C03D01
#$10 E1 S10 DF C03D01



20

#$02 E2 S14 DF C03D01
#$20 E2 S10 DF C03D01
. . . . . . 
#$08 E8 S14 DF C03D01
#$80 E8 S10 DF C03D01

Thus, the code that is stored at location $05 on the microprocessor is sent to the Interactive

controller, which implements the coding scheme described in the previous section.
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4.2.6 Operations Flowchart

4.3 Software Conclusions
The software for our project was successful insofar as its robustness of operation and ease of

comprehension.  This is not to say that improvements cannot be made.  This section will outline a

few of these potential improvements.
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As a very simple improvement to implement, the program could cycle, upon completion of

either the FOUT or SOUT routine, to a subroutine immediately preceding CHK, whose only

responsibility would be to re-activate the south track.  Currently, this action is performed by CHK.

However, CHK continues to loop on itself thus unnecessarily continuing to activate the south track,

an action that only needs to be performed once.

Furthermore, with some attention, the code related to the DC train timing could be made more

elegant by implementing the concept of indexed indirect addressing.  Suppose that address $06

contains the address of the low stopwatch byte.  After the AC train arrives at the south track station,

imagine a routine SETL being called.  The essential code fragment is shown below.

SETL LDA $02
STA $06 ; contains location of left stopwatch low byte

Now, instead of having separate timing loops for each train, we would only have a single timing

loop.  Consider the first section of that loop:

LOOK1 JSR TCHK         ; check state of train
LDA FRANUM       ; timing loop - look for a frame number of 1
CMP #$01
BNE LOOK1
LDA #$00
TAX
LDA #$01
CLC
ADC ($06,X)
STA ($06,X)      ; increment counter when 1 is seen

...

Now, imagine that after the left DC train has completed the loop, a routine SETR is called.

SETR LDA $04
STA $06 ; contains location of right stopwatch high byte

Thus, we have effectively turned the timing loop into a function, which takes as its argument an

address containing the address to be updated as the stopwatch.  We can see that, due to the

execution of indexed addressing, location $07 would need to be set to zero in the initialization

section of the program, such that the overall address accessed by the computer on the ADC and
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STA commands would be $0006.  Notice that a generalized procedure TCHK (“train check”) would

have to replace the current LCHK and RCHK.  TCHK would first compare $06 to $02.  If this

comparison showed that the two were equal, TCHK would scan the left Hall sensor.  To regain full

functionality with this new scheme, indexed indirect addressing would need to be implemented for a

high byte of stopwatch.  With this indexed indirect scheme, the elegance of the program is increased

as the timing loop is coded as a single function, which effectively receives input.
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CONCLUSIONS

Train Race includes a variety of sensors and switches which the authors have learned to use

effectively but is otherwise simple and robust.  Of the constituents of Train Race, perhaps the more

difficult aspects included coming up with a robust timing scheme for the two DC trains as well as a

simple way of controlling the AC train by communicating with the Hornby System via interactive

control.

Suggestions have been made in earlier sections as to how Train Race can be made more

elegant, but Train Race successfully meets the requirements of using microprocessor control to

sense, sequence and actuate model trains.
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APPENDICES
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Appendix A: Train Race Project Board Layout
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Appendix B: Microprocessor Layout
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Appendix C1: Address Decode Logic Worksheet
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Appendix C2: Address Decode Logic Schematic
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Appendix C3: Schematic for ADL Interface to Computer
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Appendix D1: Daughter Board #1 Layout and Schematic
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Appendix D2: Daughter Board #2 Layout and Schematic
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Appendix E: User Section of the Software
Note that this appendix does not contain additional code that was used for debugging in the

early stages.

;   **** BEGINNING OF USER SECTION ****
ORG $e000

tstart  sei
cld
ldx #$ff
txs
lda #$03       ; this is computer #3
sta blkid
lda #$00
sta dflag
lda #$00
sta novrd
sta sovrd
jsr init

;
LDA #$01        ; data direction for VIA 8000 (port A)
STA $8003
LDA #$0C        ; data direction for VIA 8000 (port B)
STA $8002
LDA #$0C        ; inactive DC trains
ORA $8000
STA $8000

CHK LDA #$01
ORA $8001
STA $8001       ; Relay off -> power initially to track
LDA $8001     ; monitors optical state, waits for 0
ROR A
AND #$01
CMP #$00        ; there's a train
BEQ WAIT
JMP CHK

WAIT LDA $8001     ; waits for sensor back edge
ROR A
AND #$01
CMP #$01        ; train's back edge
BEQ KILL
JMP WAIT

KILL  LDA $8001     ; kills power to south track
AND #$FE
STA $8001
LDA #$FB
AND $8000
STA $8000     ; activate left train only

LTIME LDA #$00        ; reset left loop timer
STA $01
STA $02
JMP LLOOK1

LCHK LDA $8000       ; check for left train at hall sensor
AND #$01
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CMP #$00
BEQ LKILL
RTS

LKILL LDA #$04
ORA $8000
STA $8000       ; kill right train
LDA #$F7
AND $8000
STA $8000       ; activate right train only

RTIME  LDA #$00         ; reset right loop timer
 STA $03
 STA $04
 JMP RLOOK1

RCHK LDA $8000        ; check for right train at hall sensor
AND #$02
CMP #$00
BEQ RKILL
RTS

RKILL LDA #$08         ; kill right train
ORA $8000
STA $8000
JMP COMP

LLOOK1 JSR LCHK         ; check state of train
 LDA FRANUM       ; timing loop - look for a frame number of 1
 CMP #$01
 BNE LLOOK1
 LDA #$01
 CLC
 ADC $02
 STA $02          ; increment counter when 1 is seen
 STA $4000
 LDA #$00
 ADC $01
 STA $01

LLOOK2 JSR LCHK         ; look for frame number of 2
 LDA FRANUM

  CMP #$02
 BNE LLOOK2

LL12  JSR LCHK          ; look for 1 again but do not increment counter
 LDA FRANUM
 CMP #$01
 BNE LL12

LL22   JSR LCHK          ; look for 2 again
 LDA FRANUM
 CMP #$02
 BNE LL22
 JMP LLOOK1        ; go back and do it again

RLOOK1 JSR RCHK          ; same as above for right DC train
 LDA FRANUM
 CMP #$01
 BNE RLOOK1
 LDA #$01
 CLC
 ADC $04
 STA $04
 STA $4000
 LDA #$00
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 ADC $03
 STA $03

RLOOK2 JSR RCHK
 LDA FRANUM

  CMP #$02
 BNE RLOOK2

RL12  JSR RCHK
 LDA FRANUM
 CMP #$01
 BNE RL12

RL22   JSR RCHK
 LDA FRANUM
 CMP #$02
 BNE RL22
 JMP RLOOK1

COMP  LDA $03          ; see which train won
 CMP $01
 BNE GRLS ; go to greater/less than if not equal
 LDA $04 ; compare low bytes
 CMP $02

GRLS  BCS FOUT
 BCC SOUT

FOUT JSR INTF
LDA $05        ; fast out left train wins
STA WDATAH
LDA #$FF
STA DFLAG
LDA #$10
STA $4000
JMP CHK

SOUT  JSR INTS
LDA $05        ; slow out right train wins
STA WDATAH
LDA #$FF
STA DFLAG
LDA #$01
STA $4000
JMP CHK

INTF  LDA STRAIN      ; check state of strain and send info to correct train
for fast out

AND #$0F
STA $05
RTS

INTS LDA STRAIN      ; check state of strain and send info to correct train
for slow out

ROL A
ROL A
ROL A
ROL A
AND #$F0
STA $05
RTS

;   **** END OF USER SECTION ****
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